Thomas R. Davidson




Google Scholar


About me

I’m a PhD candidate and member of the Social Dynamics Lab in the Department of Sociology at Cornell University. I'm supervised by Mabel Berezin, Filiz Garip, and Michael Macy (chair). My research and teaching interests are in political sociology and social movements, culture, and social networks. I specialize in using computational methods including social network analysis, machine-learning, and natural language processing. My work has been published or is forthcoming in venues including Social Forces, Mobilization, Socius, and ICWSM. You can find out more about my dissertation and other research below.


The Dynamics of Political Debate and Activism on Social Media

Social media technologies have transformed both politics and our ability to study it. In my dissertation I pose three related questions, drawing upon theories from political sociology, social movements, and public opinion. Why have far-right, populist actors have been so successful at building remarkably large online audiences and has this online presence contributed to their electoral performance? To what extent is online social movement activity, engagement, and recruitment associated with offline events like protests, elections, and terrorist attacks? What is the role of individual opinion leaders in massive online debates? To address these questions, I have compiled novel datasets combining information from social media, newspapers, and other sources, which enable me to study the dynamics of activism and debate at scale and with high granularity. Methodologically, I use a range of statistical and computational methods including social network analysis, natural language processing, and time series modeling. These studies contribute to our understanding of contemporary far-right politics, online debates, and public opinion on issues including immigration and Brexit.

My first article based on this work, co-authored with Mabel Berezin, was recently published in Mobilization. We studied the relationship between Britain First and the UK Independence Party, using a combination of newspaper data, press releases, and social media data to understand the dynamics of the relationship at both the elite and grassroots levels.

My main focus has been the UK, but I am also interested in these trends more broadly, I have co-authored articles in the Washington Post's The Monkey Cage blog on the 2017 German election and the 2018 Italian election, in both cases demonstrating how radical right breakthroughs were associated with dominance on social media. As part of my dissertation I am conducting a comparative analysis to better understand this phenomenon.

Other research

Hate speech detection

A second major area of my research focuses on identifying and understanding hate speech and hate speakers on social media. You can read our ICWSM paper on automated hate speech detection here. Our work has been covered in Wired Magazine, Tech Republic, and New Scientist. We also wrote a paper focusing on the commonalities between hate speech detection and other topics, including online abuse and cyberbullying, for the Association for Computational Linguistics 1st Workshop of Abusive Language Online. This summer we presented a paper on racial bias in hate speech and abusive language detection datasets at the 3rd Workshop for Abusive Language Online. We find that machine-learning classifiers trained on several widely used datasets are more likely to predict that tweets written in African-American English are hateful than similar tweets written in Standard American English. You can read the paper here, along with coverage in Vox

Social networks and culture

My interest in relational approaches to the study of social life has also led to a number of different projects spanning the topics of social networks and culture. I collaborated with Paromita Sanyal to study the impact of microcredit participation on women's social networks in rural India. We find that participation in associations allows women to expand their personal networks and enhance their social capital. Our work was published in Social Forces. I am currently working on a project with my colleague Antonio Sirianni to study the career trajectories of adult film performers and another solo-authored project to study how co-performance and co-production shape the development of musical genres.

Computational social science

In addition to my substantive interests, I am also interested in how computational methods can be of use to others in the field of sociology. In particular, I have focused on studying how machine-learning techniques can be imported from computer science into sociology. In a forthcoming paper in Socius (pre-print) I examine how neural networks can enable us to predict social outcomes and assess the extent to which these black box predictive models can be amenable to sociological explanations. I find that these methods do not radically outperform traditional approaches like linear regression. On the other hand, they can allow us to use large amounts of data to inductively identify important variables that have been identified in prior sociological research. I am currently working on another project with Mario Molina using simulations to examine the relationships between the model-fit statistics typically used by computer scientists and the explanatory statistics used by sociologists.

Data science

Through a series of fellowships and internships I have directly applied computational methods to challenging problems in the public sector and industry.

In the summer of 2016 I was an Eric and Wendy Schmidt Data Science for Social Good Fellow at the University of Chicago. I worked on a project to develop an early-warning system to identify police misconduct and helped develop a new model to predict risks at the dispatch level. You can read about our work here, along with media coverage in The Chicago Tribune, NPR, Mother Jones, the Economist, and Forbes. As of spring 2017 our system is being implemented into two police departments, you can read about the progress here.

In 2017 I spent the summer in the Data Science Research & Development group at Civis Analytics, a data science consulting and software company based in Chicago. I used natural language processing and machine learning techniques to build a tool to monitor political discussion on Twitter.

In summer 2018 I was a Core Data Science intern at Facebook in Menlo Park. I conducted a study of misinformation sharing on the platform and helped to evaluate and deploy a new tool related to their on-going election integrity efforts.


Please feel free to get in touch at trd54 at cornell dot edu.